Pseudomonas aeruginosa pleural empyema in a preterm infant

Hilal Özkan¹, Merih Çetinkaya¹, Nilgün Köksal¹, Solmaz Çelebi²
Mustafa Hacımustafaoğlu²

Divisions of ¹Neonatology, and ²Pediatric Infectious Disease, Department of Pediatrics, Uludağ University Faculty of Medicine, Bursa, Turkey

Pleural empyema is defined as the pyogenic infection of the pleural space with purulent effusion. Although it is frequently seen in children and therapy protocols have been developed for it, there are only a few reports about pleural empyema in newborn infants. To our knowledge, just one preterm infant has been reported in the literature. In this article, we report an male infant born at 29 weeks of gestation who had pleural empyema on the 53rd day of life. Multidrug-resistant *Pseudomonas aeruginosa* (*P. aeruginosa*) was isolated from his pleural fluid culture. We suggest that this is the first preterm infant with *P. aeruginosa* empyema.

Key words: *Pseudomonas aeruginosa*, pleural empyema, preterm infant, nosocomial infection.

Pleural empyema is known as the pyogenic infection of the pleural space with purulent effusion. Empyema is frequently seen in children and standard therapy approaches have been developed for it. However, it is a very rare entity in newborn infants, with only some 20 case reports in the literature¹-⁴. It is also a very unusual condition in preterm infants, with only one case report in the literature who was reported as having *Serratia marcescens* pneumonia, empyema and pneumatocele².

It has been suggested that insufficient immune response of the newborn in the early days of life can not localize the infection to the pleura, and furthermore, that the capacity of the pleura to produce exudate is limited. Due to these factors, the incidence of empyema in newborn infants has been considered to be very low¹.

Staphylococcus aureus, *Escherichia coli*, hemolytic group B Streptococcus, hemolytic group A Streptococcus, Klebsiella spp. and *Serratia* spp. are the most common causative agents that are isolated³,⁵,⁶. To our knowledge, *Pseudomonas aeruginosa* (*P. aeruginosa*) has not been isolated in any pleural empyema. Therefore, we suggest that this is the first case report of a preterm infant who developed *P. aeruginosa* empyema during hospitalization.

Case Report

A male infant was born by cesarean section at 29 weeks' gestation to a 23-year-old primigravida mother with Apgar 3-6 at the 1st and 5th minutes, respectively. His mother was routinely followed-up during pregnancy and she was hospitalized due to severe preeclampsia the last week before birth. The birth weight was 1170 g (10-50th centile), birth length was 37 cm (10-50th centile) and head circumference was 26.2 cm (10-50th centile). Physical examination revealed respiratory distress and tachypnea (64 breaths/min), cyanosis, intercostal and subcostal retractions, and prematurity findings. He was intubated due to respiratory distress after birth and given two doses of surfactant because there was reticular granular pattern with air bronchograms on his postero-anterior chest X-ray. His first cranial ultrasonography was performed at 24 hours of life and showed bilateral grade III intraventricular hemorrhage. He was given ampicillin and gentamicin therapies for sepsis. He developed necrotizing enterocolitis on the 3rd day of life. He could not be extubated until the 28th day of life and his chest X-ray was evaluated as chronic lung disease. Therefore, a five-day weaning course of dexamethasone and diuretic medication was
His first ophthalmological examination for retinopathy of prematurity (ROP) was found as normal. On the 43rd day of life, while he was followed as intubated, his respiratory distress increased and his physical examination revealed decreased audible breath sounds on the middle and inferior parts of the right lung. Pleural effusion and pneumatocele were determined in his chest X-ray (Fig. 1). His thorax ultrasonography revealed septated consolidation areas in which the maximum thickness reached 1 cm in the inferior lobe of the right lung. Thoracentesis was performed with the guide of ultrasonography, 3 ml purulent pleural fluid was removed, and a thoracotomy tube was placed at the same time. There were many polymorphonuclear leukocytes in the Giemsa-stained smears of this fluid and there were cocccobacilli and rare Gram-positive cocci in the Gram-stained smears. In the biochemical analysis of pleural fluid, density was 1005, pH was 8, lactate dehydrogenase (LDH) was high at 1590 UI/L (serum LDH was 270 IU/L), protein was also high at 4.8 g/dl, glucose was too low to be measured, and Rivalta reaction was found to be positive. His complete blood count showed marked leukocytosis with leukocytes of 22400/ mm³ and peripheral blood smear revealed 6% rod neutrophils, 64% neutrophils, 22% lymphocytes, and 8% monocytes with 20% of toxic granulation. His C-reactive protein was found to be higher than 15 mg/dl (normal <0.5 mg/dl). Multidrug-resistant *P. aeruginosa* was isolated from the pleural fluid culture and he was treated with meropenem (100 mg/kg/day) and amikacin (22.5 mg/kg/day). It was sensitive only to amikacin. Drainage from the thorax tube persisted for 21 days and *P. aeruginosa* was isolated in four other pleural fluid and tracheal suction cultures. No organism was isolated from blood and cerebrospinal fluid cultures. After his respirations and his chest X-ray improved and no drainage was seen from the thoracic tube, it was removed and chest X-ray showed improvement (Fig. 2). His immunological studies were found to be normal. Cystic fibrosis mutation analysis was found to be normal. Computerized thorax tomography performed after his stabilization revealed diffuse fibrotic and atelectatic changes in both lungs and volume loss in the left lung (Fig. 3). His discharge from the hospital was planned once adequate feeding and weight gain were achieved, but another sepsis episode occurred on the 190th day of hospitalization. He was again intubated due to pneumonia and respiratory insufficiency. He was given antibiotic medication, but did not respond to this therapy and died during this sepsis episode. No organism was isolated from his tracheal suction, blood, urine or cerebrospinal fluid cultures.

Discussion

Although pleural empyema is seen frequently in children, it is very uncommon in neonates. The most common causative agents in pleural empyema in children are *S. aureus, E. coli,*
Fig. 3. Computerized thorax tomography showing diffuse fibrotic and atelectatic changes in both lungs and volume loss in the left lung.

P. aeruginosa has an outer bilipid layer, a periplasmic space and an inner bacterial membrane, and this complex structure causes resistance to natural defensins and antimicrobial agents. P. aeruginosa produce beta lactamases and plasmid-associated beta lactamases. These plasmid-associated elements are usually coexpressed with other resistance mechanisms, including aminoglycoside modifying enzymes, which render the organism multdrug-resistant.

The frequency of nosocomial infections in neonatal intensive care units has increased in the last years due to the improved survival rates of low birth weight premature infants. These nosocomial pathogens are usually multidrug-resistant organisms such as P. aeruginosa, Enterobacter spp. and Klebsiella spp. P. aeruginosa has been recognized as a neonatal pathogen for almost 50 years. Because of the factors such as very low birth weight (VLBW) infants having a more fragile skin barrier, an immature immune system, prolonged use of invasive devices, and colonization with hospital flora, neonates and especially VLBW infants have an increased risk for nosocomial infections. The sinks, water baths, respiratory equipment, hand solutions, antiseptics, and neonatal incubators are the most common reservoirs of P. aeruginosa.

In neonates, pneumonia and bloodstream infections are the most common nosocomial infections. It had been reported that P. aeruginosa was an infrequent pathogen for nosocomial pneumonia and bloodstream infections, but its mortality rate was found to be high. Leigh et
al.19 stated that \textit{P. aeruginosa} infections had a 50% mortality rate among infants whose birth weight was less than 1500 g. They described feeding intolerance, prolonged parenteral nutrition, longer duration of intravenous antibiotics, and necrotizing enterocolitis as risk factors. They also found that mortality was inversely associated with age at diagnosis, and these results showed the importance of this pathogen in neonates. In addition, in a more recent study, the mortality of a \textit{P. aeruginosa} outbreak in a neonatal intensive care unit was reported as 35\%17.

Bilikova et al.20 reported ventilatory support and therapy with corticosteroids as the most important predictors of \textit{P. aeruginosa} infections in a study including 246 infants, 34 of whom had infections due to \textit{P. aeruginosa}. Our case had ventilatory support and was also given corticosteroid therapy for chronic lung disease. These factors may contribute to the development of \textit{P. aeruginosa} empyema.

In conclusion, \textit{P. aeruginosa} may lead to empyema in VLBW infants who have risk factors such as ventilatory support, therapy with corticosteroids and an immature immune system.

REFERENCES