Effect of pacifier use on exclusive and any breastfeeding: a meta-analysis

Erdem Karabulut1, S. Songül Yalçın2, Pınar Özdemir-Geyik1, Ergun Karaağaoğlu1
1Department of Biostatistics, and 2Unit of Social Pediatrics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey

The objective of this meta-analysis was to determine with cross-sectional and cohort trails whether the use of pacifier increases the risk of early weaning from exclusive breastfeeding before six months of age or cessation of breastfeeding from any breastfeeding before 24 months of age. Additionally, the effect of the age for starting pacifier use on breastfeeding duration was analyzed in the cohort trails. The Medline database was searched (1980 to 2006) with “breastfeed, breastfeeding, or breast feed” and “pacifier, dummy, or soother” as individual keywords. Only human studies published in English were included. Unpublished data were not sought. Twelve trials with weaning from exclusive breastfeeding and 19 trials with cessation of any breastfeeding were included in the meta-analysis. The meta-analysis was performed with Stata 6.0 statistical package. Summary risk ratio for early weaning before six months of age in exclusive breastfeeding trails was 2.016 (95% CI: 1.619-2.511) for pacifier users compared with nonusers in studies with univariate analysis and 1.792 (95% CI: 1.452-2.212) in studies with multivariate analysis. Similarly, pacifier usage compared with nonusers reduced the duration of any breastfeeding in both univariate (2.760, 95% CI: 2.083-3.657) and multivariate trials (1.952, 95% CI: 1.662-2.293). The use of pacifiers was associated with shortened duration of exclusive and of any breastfeeding. Given the increase in the benefits with duration of breastfeeding, parents should be informed of the link between pacifier use and shortened breastfeeding duration in order to help them make informed decisions about their children’s care.

Key words: breastfeeding, pacifier, duration, meta-analysis.

The UNICEF Baby Friendly Initiative statement recommends that pacifiers should not be given to breastfeeding infants1. However, in October 2005, the American Academy of Pediatrics recommended the use of a pacifier throughout the first year of life to decrease the risk of sudden infant death syndrome2. Concerns about recommending the use of pacifiers on a population-wide basis have focused primarily on otitis media3, dental malocclusion4-5 and dental caries6. In addition to these effects, pacifier use has been associated with shorter breastfeeding duration by a number of authors7-12. However, breastfeeding duration has been documented to be positively associated with cognitive development in children and later adulthood13. Recent systematic reviews have also shown a dose-dependent association between longer duration of breastfeeding and decrease in the risk of overweight in later life14,15. Furthermore, breastfeeding has been associated with lower blood pressure, lower risks of urinary tract and middle ear infections, and reduced infant morbidity3,16,17. The benefits to infants appear to increase with longer duration of breastfeeding.

Although there are a number of studies indicating the association of pacifier use with significant declines in breastfeeding, there has been no systematic review about this subject. The objective of this study was to determine whether the use of pacifier increases the risk of early weaning from exclusive breastfeeding before six months of age or cessation of...
breastfeeding from any breastfeeding before 24 months of age. We also aimed to analyze the effect of age of starting pacifier use on breastfeeding duration.

Material and Methods
The Medline database was searched (1980 to 2006) to obtain data about pacifier use and its association with early weaning from exclusive breastfeeding and cessation of any breastfeeding. The last electronic search was conducted on December 23, 2006. Individual keywords used in the study search included: “breastfeed, breastfeeding, or breast feed” and “pacifier, dummy, or soother”. Only human studies published in English were included. Unpublished data were not sought. Prospective cohorts and case control studies that analyzed the risk of early weaning in infants with exclusive breastfeeding or any breastfeeding in pacifier users were included in the meta-analysis. Three independent reviewers read and evaluated all abstracts for inclusion. All data were abstracted by using a standardized protocol and computerized report form. Authors were contacted for any missing information via e-mail. The obtained full text articles were evaluated independently by three reviewers to determine whether or not the articles met the inclusion criteria. In some studies in which the published data did not fulfill the requirements, the corresponding author was contacted by e-mail for additional information. Disagreements were resolved by consensus.

Breastfeeding Definitions: Where appropriate, the breastfeeding terms that were used in this study were those recommended by the World Health Organization (WHO). An infant was considered to be exclusively breastfed when he or she had received only breast milk with no other liquids or solids. Any breastfeeding was defined as an infant’s being fully breastfed or receiving both breast milk and a formula, with or without solids.

Our review identified 42 confounding factors that were taken into consideration when evaluating the relation between breastfeeding duration and pacifier use: infant gender, birth weight and length, type of delivery, multiple birth, parity, planned pregnancy, maternal age, maternal education, paternal age, paternal education, employment status of the parents, factors related to socioeconomic status, marital status, nationality, infant exposure to tobacco smoke (prenatal or postpartum), presence of breastfeeding problems, parents’ attitude towards breastfeeding, mothers having been breastfed, prenatal care quality, medical problems before, during, and after delivery, infant discharged home from hospital same time as mother, time at initiation of breastfeeding, pacifier use in hospital ward, formula supplements in the maternity ward, formula promotion at discharge, breastfeeding at hospital discharge, mother sharing bed with infant, whether infant sleeps in parental room at night, use of oral contraceptive, home visit post-birth, use of regular child care, plans to return to work and age of infant when mother returned to work, age at initiation of bottle-feeding, age at initiation of formula or solid foods, breastfeeding on demand or schedule, type of breastfeeding at 1 month of age, body weight at 1 month and at 4 months, child sleeps 6 h at night, body mass index (BMI), knowledge about the lactation centers, and current pregnancy status at the first and at 6 months. Studies were considered covariate-adjusted if they were controlled statistically for a minimum of one characteristic in models to estimate effects of breastfeeding compared with those of pacifier on breastfeeding duration. Outcome measures were unadjusted and adjusted risks of early weaning before six months of age and stopping any breastfeeding before 24 months of age in children who used pacifier. Pooled estimates of effect were separately calculated for unadjusted and adjusted results. We conducted the meta-analysis calculations separately for studies including exclusive breastfed cases and any breastfed cases.

Meta-analysis of studies with binary outcomes (relative risk, odds ratio) were performed. Meta-analysis was performed with Stata 6.0 statistical package. To perform meta-analysis in Stata, user-written meta command was used. The effect estimate (relative risk or odds ratio) and its corresponding standard error for each study were required in meta command. Q test for homogeneity of risk estimates was used. Significant heterogeneity was detected between studies, so pooled estimates of the risk for early weaning were generated using random effects models. Forest plots were drawn to
show the results graphically. In a forest plot, the contribution of each study to the meta-analysis (its weight) is represented by the area of a box, the center of which represents the risk ratios estimated from that study (point estimate). The confidence intervals (CIs) for the risk ratios from each study were also shown. The risk ratio is shown by the middle of a diamond, the left and right extremes of which represent the corresponding CI. Publication bias was assessed using the funnel plot method and the Egger and Begg tests.

Results

Searches with selected keywords resulted in 386 abstracts. Only 34 abstracts were identified as appropriate for further assessment when inclusion criteria were considered. After the assessment of the 34 articles, 11 trials were excluded from the study. Studies were excluded for the following reasons: there were some interventions in three studies; two studies were review; only preterm infants were included; the same subjects were included in two studies; so one was excluded; there were no information about nonuser; relation between pacifier use and breastfeeding problems were examined; two groups (standard and WHO groups) were compared; and outcome variable (duration of breastfeeding) was measured in continuous scale. Of the remaining 23 eligible reports, 12 trials reported weaning from exclusive breastfeeding and 19 trials analyzed cessation of any breastfeeding status. The summary characteristics of trials meeting the criteria for inclusion are listed in Tables Ia and Ib.

No publication bias was detected in cases with exclusive breastfeeding. However, for any breastfeeding cases, publication bias was detected in univariate analysis with both the funnel plot and the Egger test (p<0.001), although the Begg test was non-significant (p=0.064). The funnel plot method and the Egger (p<0.001) and Begg (p=0.008) tests were statistically significant in multivariate analysis for any breastfeeding cases.

Summary risk ratio (SRR) for early weaning before six months of age in exclusive breastfeeding trials was 2.016 (95% CI: 1.619-2.511) for pacifier users compared with nonusers in studies with univariate analysis (Fig. 1a).
Table Ia. (Cont’d)

<table>
<thead>
<tr>
<th>Author</th>
<th>Publication Year</th>
<th>Location</th>
<th>Study type</th>
<th>No. of infants</th>
<th>Pacifier</th>
<th>Univariate risk ratio (95% CI)</th>
<th>Multivariate risk ratio (95% CI)</th>
<th>Confounders adjusted for in multivariate analysis*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson et al.</td>
<td>2005</td>
<td>Multicenter, 17 countries</td>
<td>Prospective</td>
<td>2884</td>
<td></td>
<td>2.16 (1.85-2.52)</td>
<td>1.85 (1.01-3.38)</td>
<td>5, 8, 9, 16, 18, 28</td>
</tr>
<tr>
<td>Mikiel-Kostyra et al.</td>
<td>2005</td>
<td>Poland</td>
<td>Cross-sectional</td>
<td>898</td>
<td></td>
<td>2.49 (2.28-2.71)</td>
<td>2.38 (2.17-2.61)</td>
<td>8, 9, 11, 12, 16, 18</td>
</tr>
<tr>
<td>Merten et al.</td>
<td>2005</td>
<td>Switzerland</td>
<td>Cross-sectional</td>
<td>2861</td>
<td></td>
<td>1.38 (1.25-1.52)</td>
<td></td>
<td>4, 8, 9, 12, 13, 15, 16, 21</td>
</tr>
</tbody>
</table>

Table Ib. Characteristics of Included Trials with Any Breastfed Infants for Meta-analysis

<table>
<thead>
<tr>
<th>Author</th>
<th>Publication Year</th>
<th>Location</th>
<th>Study type</th>
<th>No. of infants</th>
<th>Pacifier</th>
<th>Univariate risk ratio (95% CI)</th>
<th>Multivariate risk ratio (95% CI)</th>
<th>Confounders adjusted for in multivariate analysis*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victora et al.</td>
<td>1993</td>
<td>Brazil</td>
<td>Cross-sectional</td>
<td>249</td>
<td>1 mo</td>
<td>3.00 (1.90-4.60)</td>
<td></td>
<td>1, 2, 9, 13, 34</td>
</tr>
<tr>
<td>Barros et al.</td>
<td>1995</td>
<td>Brazil</td>
<td>Prospective</td>
<td>605</td>
<td>1 mo</td>
<td>3.84 (2.65-5.50)</td>
<td>2.87 (1.97-4.19)</td>
<td>9, 17, 41</td>
</tr>
<tr>
<td>Clements et al.</td>
<td>1997</td>
<td>United Kingdom</td>
<td>Cross-sectional</td>
<td>511</td>
<td>last 2 wks</td>
<td>3.25 (2.29-4.33)</td>
<td>2.64 (1.81-3.84)</td>
<td>8, 9, 12, 14, 16, 28</td>
</tr>
<tr>
<td>Victora et al.</td>
<td>1997</td>
<td>Brazil</td>
<td>Prospective</td>
<td>655</td>
<td>1 mo</td>
<td>4.02 (2.46-3.12)</td>
<td>2.37 (1.40-4.01)</td>
<td>1, 2, 8, 27, 36</td>
</tr>
<tr>
<td>Kelmanson et al.</td>
<td>1999</td>
<td>Russia</td>
<td>Cross-sectional</td>
<td>192</td>
<td></td>
<td>3.09 (1.50-6.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howard et al.</td>
<td>1999</td>
<td>USA</td>
<td>Prospective</td>
<td>265</td>
<td>6 wks</td>
<td>1.61 (1.19-2.19)</td>
<td></td>
<td>4, 8, 18, 21, 33</td>
</tr>
<tr>
<td>Riva et al.</td>
<td>1999</td>
<td>Italy</td>
<td>Prospective</td>
<td>1365</td>
<td>1 mo</td>
<td>1.30 (1.18-1.50)</td>
<td>1.18 (1.04-1.34)</td>
<td>9, 25</td>
</tr>
<tr>
<td>Aarts et al.</td>
<td>1999</td>
<td>Sweden</td>
<td>Prospective</td>
<td>506</td>
<td>1 mo</td>
<td>2.28 (1.61-3.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kloeblen-Tarver</td>
<td>2001</td>
<td>USA</td>
<td>Prospective</td>
<td>129</td>
<td></td>
<td>8.70 (3.10-25.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vogel et al.</td>
<td>2001</td>
<td>USA</td>
<td>Prospective</td>
<td>350</td>
<td>1 mo</td>
<td>1.71 (1.29-2.28)</td>
<td>1.91 (1.45-2.51)</td>
<td>12, 13, 8, 14, 16, 17, 18</td>
</tr>
<tr>
<td>Görbe et al.</td>
<td>2002</td>
<td>Hungary</td>
<td>Prospective</td>
<td>356</td>
<td></td>
<td>10.32 (4.79-22.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binns et al.</td>
<td>2002</td>
<td>Australia</td>
<td>Prospective</td>
<td>556</td>
<td>2 wks</td>
<td>2.50 (1.59-4.00)</td>
<td></td>
<td>1, 8, 9, 17</td>
</tr>
<tr>
<td>Levy et al.</td>
<td>2002</td>
<td>USA</td>
<td>Prospective</td>
<td>1069</td>
<td>6 wks</td>
<td>1.67 (1.27-2.21)</td>
<td></td>
<td>1, 8, 9, 10, 11, 13, 16, 18, 21</td>
</tr>
<tr>
<td>Soares et al.</td>
<td>2003</td>
<td>Brazil</td>
<td>Prospective</td>
<td>218</td>
<td></td>
<td>2.80 (1.60-4.70)</td>
<td>2.20 (1.30-3.80)</td>
<td>37</td>
</tr>
</tbody>
</table>
and 1.792 (95% CI: 1.452-2.212) in studies with multivariate analysis (Fig. 1b, Table II). Similar to exclusive breastfeeding trails, pacifier usage compared with nonusers increased the risk of cessation of any breastfeeding in both univariate (SRR: 2.760, 95% CI: 2.083-3.657) and multivariate (SRR: 1.952, 95% CI: 1.662-2.293) trials (Fig. 1c, Fig. 1d, Table II).

We wished to determine if cross-sectional studies gave larger estimates of change in the duration of breastfeeding with pacifier use than cohort trails. When meta-analysis was repeated with cohort studies, similar results were obtained (Table III).

Table III presents the pooled effect estimates for studies that compared outcomes for pacifier use before four or six weeks vs. never pacifier use or after four or six weeks. Interestingly, with postponing age for pacifier initiation to four or six weeks of age, the risk of early weaning or cessation of breastfeeding declined.

Discussion

This meta-analysis indicates that pacifier use is associated with a two times increased risk of early weaning and cessation of breastfeeding. The estimated effect for any breastfeeding infants was of the same magnitude and statistically significant for exclusive breastfeeding infants. This difference between pacifier users and nonusers was observed in both cross-sectional and cohort trials. The proposed mechanism for the relationship between reduced breastfeeding and pacifier use is that when infants are using pacifiers they tend to suck on the breast less, and as a result this reduces the milk supply, subsequently ending breastfeeding.9,28

This meta-analysis should be interpreted within the context of some limitations. First, any meta-analysis is subject to publication bias. Although we used an extensive search strategy for finding published trials, we did not attempt to identify unpublished trials. Second, a meta-analysis is limited by the quantity and quality of existing data. The methodologies of the included studies were different. We do not have the ability to make thorough cross-study checks that can be done using the raw data. Further, there was no unique definition of breastfeeding types in trails. Finally, all meta-analyses contain heterogeneity. The statistically significant heterogeneity among the studies
Fig. 1. Forest plot of the studies for risk of early weaning with pacifier use [Odds ratios and 95% confidence intervals (CI) for early weaning from exclusive (a,b) and any (c,d) breastfeeding comparing ever-pacifier-used with never-pacifier-used infants in univariate (a,c) and multivariate (b,d) studies. The study authors and year of publication are indicated on the y-axis. The box for each study is proportional to the inverse of the variance; horizontal lines show 95% CIs of the odds ratios. The pooled estimate is based on a random-effects model shown by a dashed vertical line and diamond (95% CI).
Table II. Pacifier Use and Risk of Early Weaning in Cases with Exclusive Breastfeeding or Cessation of Breastfeeding in Cases with Any Breastfeeding in Trails with Univariate and Multivariate Analysis

<table>
<thead>
<tr>
<th>Breastfeeding status</th>
<th>Type of estimate</th>
<th>No. of studies</th>
<th>Test for heterogeneity Q</th>
<th>Summary risk ratio (95% CI)</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusive</td>
<td>Univariate</td>
<td>8</td>
<td>62.245*</td>
<td>2.016 (1.619-2.511)</td>
<td>6.263*</td>
</tr>
<tr>
<td></td>
<td>Multivariate</td>
<td>10</td>
<td>110.961*</td>
<td>1.792 (1.452-2.212)</td>
<td>5.430*</td>
</tr>
<tr>
<td>Any</td>
<td>Univariate</td>
<td>12</td>
<td>120.556*</td>
<td>2.760 (2.083-3.657)</td>
<td>7.073*</td>
</tr>
<tr>
<td></td>
<td>Multivariate</td>
<td>15</td>
<td>80.138*</td>
<td>1.952 (1.662-2.293)</td>
<td>8.144*</td>
</tr>
</tbody>
</table>

*p<0.001.

Table III. Results of Meta-Analysis for Only Prospective Cohort Studies According to Pacifier Introduction Time

<table>
<thead>
<tr>
<th>Pacifier introduction time</th>
<th>Type of estimate</th>
<th>No. of studies</th>
<th>Test for heterogeneity Q</th>
<th>Summary risk ratio (95% CI)</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusive Breastfeeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1 month</td>
<td>Univariate</td>
<td>3</td>
<td>4.776</td>
<td>1.546 (1.282-1.865)</td>
<td>4.560*</td>
</tr>
<tr>
<td></td>
<td>Multivariate</td>
<td>4</td>
<td>11.928*</td>
<td>1.539 (1.261-1.879)</td>
<td>4.240*</td>
</tr>
<tr>
<td>≤6 weeks</td>
<td>Univariate</td>
<td>4</td>
<td>16.228*</td>
<td>1.751 (1.347-2.277)</td>
<td>4.179*</td>
</tr>
<tr>
<td></td>
<td>Multivariate</td>
<td>6</td>
<td>23.466*</td>
<td>1.664 (1.366-2.027)</td>
<td>5.061*</td>
</tr>
<tr>
<td>All</td>
<td>Univariate</td>
<td>6</td>
<td>31.765*</td>
<td>1.941 (1.524-2.471)</td>
<td>5.380*</td>
</tr>
<tr>
<td></td>
<td>Multivariate</td>
<td>8</td>
<td>29.060*</td>
<td>1.740 (1.430-2.118)</td>
<td>5.526*</td>
</tr>
</tbody>
</table>

Any Breastfeeding | | | | | |
≤1 month	Univariate	5	55.046*	2.322 (1.471-3.665)	3.617*
	Multivariate	7	41.183*	1.814 (1.427-2.307)	4.857*
≤6 weeks	Univariate	5	55.046*	2.322 (1.471-3.665)	3.617*
	Multivariate	9	43.099*	1.758 (1.449-2.133)	5.723*
All	Univariate	10	105.410*	2.681 (1.983-3.623)	6.413*
	Multivariate	12	63.536*	1.900 (1.576-2.291)	6.727*

*p<0.001.

forced us to use random effects model. To minimize bias during trial selection, we used predetermined inclusion criteria and we took all studies with any breastfed infants and repeated meta-analysis in cohort studies.

Several factors might affect breastfeeding duration; however, limited trials were controlled for these confounding factors. Maternal age, education, social status, unrestricted mother–infant contact and frequent feeding are associated with the duration of breastfeeding, as well as psychosocial factors such as intention to breastfeed, self-efficacy and confidence concerning breastfeeding, and earlier experiences with breastfeeding. The Baby-Friendly Hospital Initiative is a useful guide to increase rates of exclusive breastfeeding, but continuing support is needed to prevent a decline in an initially high breastfeeding rate. The Baby-Friendly Hospital Initiative is a useful guide to increase rates of exclusive breastfeeding, but continuing support is needed to prevent a decline in an initially high breastfeeding rate.

Breastfeeding duration was negatively associated with breastfeeding difficulties in the first four weeks, maternal smoking, introduction of a pacifier, and early return to work. In this study with further meta-analyses, there was no evidence that effects estimates differed according to study design (adjusted or unadjusted for some confounding factors). Similarly, Aarts et al.9 found that adjusting for mothers’ age and education level had no impact on findings, while Howard et al.’s10 analysis was based on a model that had considered many possible predictors of breastfeeding (including maternal age, parental education, social class and breastfeeding preferences), but found use of pacifiers to be a significant factor independent of these.

Pacifiers provide some beneficial effects including management of discomfort during painful procedures as determined by reductions in crying and other validated measures. Two recent meta-analyses have shown that pacifier use in the last sleep is associated with a reduced risk of sudden infant death syndrome (SIDS). However, breastfeeding is also associated with a reduced risk of SIDS. Breastfed infants have more arousals than bottle-fed infants, which may explain a possible protective effect. In addition, breastfeeding reduces infection, which could also be the protective mechanism.

Volume 51 • Number 1 Effect of Pacifier Use on Breastfeeding 41
Even if the recommendation to breastfeed is not included in the specific SIDS-prevention advice, it should be included in the general advice, as it reduces morbidity and mortality in infants even in developed countries. Furthermore, links have been made between pacifier sucking and the risks of suffering from otitis media and gastrointestinal problems, increased reporting of wheezing, earache, possetting and diarrhea. Adults who had used a pacifier in infancy were found to have a significantly lower intelligence score than those who had not.

One randomized, controlled trial found that early pacifier users (2-5 days at introduction) were slightly less likely to be exclusively breastfed at one month compared with nonusers. It was suggested that pacifier introduction after one month of age was not detrimental to breastfeeding duration. Similarly, this meta-analysis suggests that pacifier use may have a significant effect on breastfeeding duration in term infants, and initiation of pacifier use after 4-6 weeks is associated with greater reductions in risk of early weaning or cessation of breastfeeding.

The benefits of breastfeeding in infants tend to increase with longer duration of breastfeeding. However, the use of pacifiers (dummies) has been associated with shortened duration of breastfeeding. Parents should be informed of the link between pacifier use and shortened breastfeeding duration in order to help them make informed decisions about their children’s care.

REFERENCES