Clinical findings in cases with 9q deletion encompassing the 9q21.11q21.32 region

Esra Tuğ, M. Ali Ergün, E. Ferda Perçin
Department of Medical Genetics, Gazi University Faculty of Medicine, Ankara, Turkey.
E-mail: esratug@hotmail.com
Received: 17th February 2017, Revised: 27th April 2017, Accepted: 10th June 2017

We report on a case with developmental delay and dysmorphic craniofacial features, and a novel 15.2 Mb interstitial deletion within 9q21.11q21.32 confirmed with array comparative genomic hybridization (aCGH). A twenty-two month old boy with inability to walk without support, absent speech, and attention deficit and hyperactivity disorder was seen in our clinic. His craniofacial examination revealed relative macrocephaly, facial asymmetry, frontal bossing, sparse medial eyebrows, hypertelorism, broad base to nose, smooth philtrum, large mouth, operated cleft lip and wide spaced teeth. The high resolution binding (HRB) chromosome analysis revealed an interstitial deletion 46,XY,del(9)(q21) confirmed by aCGH revealing; 46,XY,der(9) (pter \rightarrow q21.11::q21.32 \rightarrow qter).arr9q21.11q21.32(71,069,763-86,333,272)X1dn.

Genotype-phenotype correlations of sixteen cases with 9q21 deletion having different breakpoints and variable length revealed common characteristic features including severe developmental delay, epilepsy, neuro-behavioural disorders and facial dysmorphism including hypertelorism, smooth philtrum and thin upper lip. The smallest overlapping deleted region in all defined cases to date including our case comprised four genes. Among these deleted genes as in our case, especially RORB is considered to be a strong candidate for neurological phenotype.

Key words: 9q21 microdeletion, intellectual disability, developmental delay, speech disorder, autism, behavioral problems.

Cytogenetically visible interstitial deletions of 9q do not define a characteristic phenotype, due to the presence of very few cases1. Lately, nine cases with a novel microdeletion at 9q21.13 presenting with mental retardation, speech delay, epilepsy, and characteristic facial features have been reported by Boundry-Lapis et al.2. In addition to these, one case with epilepsy, eyelid myoclonia and generalized tonic-clonic seizures and autism has been reported by Bartnik et al.3 and another case with mild intellectual disability and idiopathic partial epilepsy has also been reported by Baglietto et al.4. The deleted segments in all cases with interstitial deletions of chromosome 9q21.11-21.32 spanned from 2.2 to 12.6 Mb and included a variable number of genes.2 In addition to these eleven cases, four cases with deletions localized to the same region with similar clinical phenotypes have been reported in the DECIPHER database. The smallest overlapping deleted region extending 750 Kb included four genes in all reported cases.2,3 The array comparative genomic hybridization (aCGH) is very useful to identify involved genes in gains or losses of genetic material and enables to delineate genotype-phenotype correlations.2 Here, we present a rare and the youngest case yet reported of de novo interstitial deletion of chromosome 9q21, with the genotype-phenotype correlations and the review of the literature.

Case Report

A twenty-two-month-old boy was admitted to our clinic for intellectual and developmental...
disability and absent speech. He was born with a cleft lip at term to healthy non-consanguineous parents after an unremarkable gestation via cesarean. His birth weight was 3,400 g (25-50th centile), length was 50 cm (50th centile), and head circumference unknown. He was hospitalized 15 days after birth due to respiratory distress and excessive vomiting. He had surgery due to his cleft lip at 3 months. Early motor-milestones were delayed; inability to walk without support and absent speech at 22 months. He had behavioral disorders such as aggressive and poor communication. In the physical examination, his weight, height and head circumference were 10,500 g (3-10th centile), 85 cm (10-25th centile) and 49 cm (50th centile), respectively. He had craniofacial dysmorphic features including relative macrocephaly, facial asymmetry, midface flattening, frontal bossing, sparse medial eyebrows, hypertelorism, broad base to nose, smooth philtrum, large and open mouth, thin upper lip, operation scar on the lip and posterior rotated ears.

The Denver Developmental Screening test that had been performed at 1 year and 11 months of age revealed common developmental disorder, and the personal and social development with thin-motion development; language development and coarse movement development was found to be compatible with 10, 9 and 14 months, respectively. When he was re-examined at the age of 5 years, he had attention deficit and hyperactivity disorder (ADHD) and had seizures since 1 year. Electroencephalogram (EEG) showed focal epileptic disorder. Echocardiography and renal ultrasonography (USG) were normal.

High resolution cytogenetic analysis was performed at 1 year and 11 months of age revealing a deletion of 9q21. GTG banded karyotype of the proband and ideogram corresponding to 550 band levels as described by ISCN.
performed on cultured lymphocytes by G-banding according to standard procedures. We identified a \textit{de novo} interstitial deletion in 9q21 locus (Fig. 2). For identified affected genes in the deleted region, we performed molecular karyotyping using the SurePrint G3 Human GE 8x60K Microarrays (Agilent Technologies, Santa Clara, CA, USA) according to the manufacturer’s protocol. Molecular karyotype was 46,XY,der(9)(pter\rightarrow q21.11::q21.32\rightarrow qter). arr 9q21.11q21.32(71,069,763-86,333,272) X1dn. The deleted region spans \~15.2 Mb at 9q21.11 q21.32 (Fig. 3).

Written informed consent was obtained from the patients’ guardians.

Discussion

We evaluated the findings of our case with the sixteen cases with interstitial deletion on 9q21,2,3,4. Four cases of these with deletions localized on the same chromosomal region with similar clinical phenotypes have also been reported in the DECIPHER database. All cases previously presented and our case’s karyotypes and sizes of deletion on 9q21 locus, age at diagnosis and clinical findings are shown in Table I. Although there have been limited cases reported with 9q21 deletions, our molecular karyotyping results enabled us to perform a genotype-phenotype correlation with the reported genes. Especially intellectual disability (93.75\%), developmental retardation (87.5\%), speech disorder (68.75\%), seizure (81.25\%), autistic behaviour (56.25\%)/behavioural problems (46.6\%) and facial dysmorphism (100\%) were cardinal findings of 9q21 microdeletion syndrome. Hypertelorism, smooth philtrum, large and open mouth and thin lips were common dysmorphic features in these cases (Table I). Clinical findings of the case including cleft lip, midface flattening, large mouth, broad base of nose suggest that 9q21 deletion leads to a craniofacial phenotype. The nonspecific midline MRI findings are supportive of these conditions. Also, we want to emphasize that our case is the youngest case yet reported.

The brain MRI findings differ between the cases. Chiari type I malformation, hippocampal asymmetry, hypoplasia of corpus callosum, delayed myelinisation and arachnoid cyst are reported in cases described by Boudry-Labis et al.2. The MRI of our case revealed an incision in the upper segment of the corpus callosum. Also, in all of the cases including our case, behavioral problems, hyperactivity or autism were remarkable.2,3

Regarding the deleted genes, our case was similar with Boundry-Labis et al.2 study. They proposed the smallest deleted region in all cases with overlap extending 750 Kb which included four genes \textit{RORB, TRPM6, NMRK1, OSTF1}, and also suggested that these four genes seem to be candidate genes for the neurological phenotype.2 However, Baglietto et al.4 claimed that \textit{NMRK1} and \textit{OSTF1} are not expressed in the brain and do not seem to be relevant candidates for neurodevelopmental disorders. \textit{TRPM6} has been associated with a known human disorder (OMIM 602014). Homozygous
Table I. Previously Presented Patients and Our Patient's Karyotypes and Sizes of Deletion on 9q21 Locus, Age at Diagnosis, Clinical and Radiological Findings

<table>
<thead>
<tr>
<th>Karyotype</th>
<th>Patient</th>
<th>Karyotype in Article</th>
<th>Age at Diagnosis (years)</th>
<th>Clinical and Radiological Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>46,XY</td>
<td>Patient 1</td>
<td>46,XY</td>
<td>8</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>46,XY</td>
<td>Patient 2</td>
<td>46,XY</td>
<td>15</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>46,XY</td>
<td>Patient 3</td>
<td>46,XY</td>
<td>2</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>46,XY</td>
<td>Patient 4</td>
<td>46,XY</td>
<td>12</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>46,XY</td>
<td>Patient 5</td>
<td>46,XY</td>
<td>16</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>46,XY</td>
<td>Patient 6</td>
<td>46,XY</td>
<td>15</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>46,XY</td>
<td>Patient 7</td>
<td>46,XY</td>
<td>4.5</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>46,XY</td>
<td>Patient 8</td>
<td>46,XY</td>
<td>2</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>46,XY</td>
<td>Patient 9</td>
<td>46,XY</td>
<td>16</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>46,XY</td>
<td>Patient 10</td>
<td>46,XY</td>
<td>10 month</td>
<td>+ + + + + + + + + +</td>
</tr>
</tbody>
</table>

Note: The patients 2-4 from Decipher database and the case of Bartnick et al. were excluded from this table as the detailed dysmorphic findings of them were not accessible.
or compound heterozygous mutations in this gene are associated with hypomagnesemia with secondary hypocalcemia. While calcium measurement in our case was 9.55 mg/dl (normal range 9-11 mg/dl), unfortunately magnesium measurement and TRPM6 gene sequencing to exclude a mutation of the remaining allele have not been performed. Additionally, our case did not have the clinical findings of generalized convulsions, muscle spasms or tetany which were the manifestations of the hypomagnesemia.

Boundry-Labis et al. proposed RORB as a strong candidate for a neurological phenotype such as mental retardation and epilepsy. RORB gene was cloned from a rat brain library and its transcripts were found to be expressed only in the brain regarding other tissues. Also, RORB was demonstrated to be expressed in the temporal cortex of cases with temporal lobe epilepsy. The focal epileptic disorder beginning later in patients may also be associated with RORB gene dosage deficiency.

Previous studies indicate that RORB regulates neuronal patterning during cortical development and Rorb-null rats show disruption in some neurological reflexes and exhibit behavioural changes. Recent studies demonstrated correlation between RORB and bipolar disorders. The behavioral problems, in our case also supporting these findings whereas, the hyperactivity or autistic behaviour may be related to the lack of compensation for this gene dosage.

As a conclusion, we report on a case having a novel ~15.2 Mb interstitial deletion within 9q21.11q21.32 confirmed with aCGH. As well as intellectual disability, developmental delay, speech disorder, epilepsy, autistic behaviour/behavioral problems and dysmorphic features including especially hypertelorism, long and smooth philtrum, open and large mouth, thin upper lips are important findings of this deletion. RORB, TRPM6, NMRK1, OSTF1 genes which are localized in 750 Kb smallest deleted region seem to be candidate genes for the neurological phenotype. Especially RORB may be responsible for epilepsy, behavioural problems, hyperactivity or autistic behavior.

Acknowledgements

The authors would like to express their gratitude to the case’s parents for their cooperation in the clinical evaluation, analysis and consent for photo release.

REFERENCES