A case with Rubinstein–Taybi syndrome: A novel frameshift mutation in the CREBBP gene

Metin Eser¹, Akif Ayaz², Gözde Yeşil³
¹Department of Medical Genetics, Aydın State Hospital, Aydın; ²Department of Medical Genetics, Adana Numune Training and Research Hospital, Adana; ³Department of Genetics, Bezmialem Vakıf University, School of Medicine, Istanbul, Turkey
E-mail: meserdr@hotmail.com
Received: 10th February 2017, Revised: 22th March 2017, Accepted: 19th May 2017

Rubinstein–Taybi syndrome (RSTS) is a developmental disorder characterized by a wide spectrum of multiple congenital anomalies and cognitive impairment. RSTS is primarily due to mutations in CREBBP (approximately 55% of cases) or EP300 (approximately 8% of cases) genes. A 2 month-old boy had atypical facial findings such as low anterior hairline, triangular face, hirsutism on forehead, down-slanting palpebral fissures, beaked nose, broad nasal bridge, triangular mouth and pointed chin and skeletal finding including broad great thumbs and halluces, and accessory nipple. With this paper, we reported a novel frameshift mutation which is led to premature stop codon in CREBBP gene. As a result, c.2057dupC, reported in this paper enlarges the molecular spectrum of disease-causing CREBBP gene.

Key words: Rubinstein–Taybi syndrome, CREBBP, c.2057dupC.
head circumference 33 cm (<3p). Besides microcephaly, he had large anterior fontanelle, low anterior hairline, triangular face, hirsutism on forehead, downslanting palpebral fissures, beaked nose, broad nasal bridge, triangular mouth, pointed chin, broad great thumbs and halluces, deep plantar creases between 1st and 2nd toes, capillary hemangioma on back of neck and accessory nipple below right nipple (Fig. 1A-C). Other observed findings included gastroesophageal reflux on esophagography and minimal secundum ASD.

Some clinical findings of the patient such as microcephaly, beaked nose, broad great thumbs/halluces and short stature overlap with RSTS. Sequencing of \textit{CREBBP} was performed by next-generation sequencing technique. The sequencing reactions were performed using the MiSeq Illumina sequencer (Illumina, San Diego, CA). Data analysis was performed by MiSeq Reporter. Sequencing of \textit{CREBBP} revealed a C duplication at c.2057 position in the \textit{CREBBP} gene (c.2057dupC), a frameshift mutation predicted to result in premature termination at the 726th amino acid of CREB binding protein (p.Ala687SerfsTer*39). A written informed consent for the publication of the patient’s pictures was given by his parents.

\section*{Discussion}

RSTS was described in 1963 by Rubinstein and Taybi4 and found to be caused first by mutations in \textit{CREBBP}7. CREB-binding protein (CBP) is a large protein which includes a bromodomain conserved structural unit critical for protein-protein interactions. The protein serves as a transcriptional coactivator associated with cell development and growth. Chrivia et al.8 reported the discovery of a nuclear transcriptional coactivator protein, CBP, that binds specifically to the PKA-phosphorylated form of the CREB protein. But CBP also interacts with a large number of other proteins. By means of CBP, it forms a bridge between the DNA-binding transcription factors and the RNA polymerase II complex. In addition, with intrinsic histone acetyl transferase (HAT) activity, CBP opens the chromatin structure of related locus. P300 protein which is encoded by second minor gene, \textit{EP300}, identified

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{(A) Facial view from the front. The patient had low anterior hairline, triangular face, hirsutism on forehead, down slanting palpebral fissures, beaked nose, broad nasal bridge, triangular mouth, pointed chin. (B) broad great thumbs and (C) halluces. (D) Molecular modelling of CREB-binding protein. (E) Molecular modelling of mutant, p.Ala687SerfsTer*39, CREB-binding protein}
\end{figure}
in RSTS shares homology with CBP. Both proteins have HAT domain and are functional partners in the co-activation of the transcription process. Through histone acetylation, they modify chromatin structure and regulate the expression of a large number of genes. Despite high homology between CBP and P300, both proteins have distinct cellular functions and cannot always replace one another.¹⁰

As far as our knowledge, the mutation presented here, c.2057dupC (p.Ala687SerfsTer*39), has not been reported in the literature to date. Although it was not possible to determine if the mutation was de novo owing to unavailable parental DNA, this mutation is likely to be pathogenic because it leads to premature stop codon. The mutant protein predicted to be free from bromodomain which is important for protein-protein interactions and HAT domain which is a critical fragment for expression of a variety of genes. In addition, these mutant transcripts are targeted for rapid degradation by nonsense-mediated decay (NMD). Molecular modeling of both CREB-binding protein and mutant, p.Ala687SerfsTer*39 CREB-binding protein are shown in Figure 1D and Figure 1E, respectively.

As for CREBBP gene mutation variety, from chromosomal rearrangements to point mutations located nearly the entire length of the gene are reported. To date, >300 mutations are reported in CREBBP according to HGMD (November 2016).¹¹ The mutation spectrum is represented mostly from nonsense and missense (103), and splice site (24) heterozygous mutations. Small deletions or small insertions (96) and gross deletions or gross insertions (89) also have been reported.

There are some phenotypic differences between patients with CREBBP and EP300 mutations, particularly the skeletal findings and intellectual development.¹² In patients with EP300 mutation, skeletal findings and intellectual development also appears to be less affected. In our case, short stature, broad great thumbs and halluces were prominently present; more compatible with CREBBP mutation. In addition, when he was 2 year-old, psychometric evaluation was reported as abnormal but findings were not detailed.

As a result, we present a case with RSTS, which is rare, along with clinical findings and a novel frameshift mutation predicted to result in premature termination, c.2057dupC, in CREBBP gene. In addition, it is important that the mutation reported here enlarges the molecular spectrum of disease-causing CREBBP gene. To enlarge this spectrum and detail genotype-phenotype correlation, clinically diagnosed cases with RSTS should be screened for CREBBP and EP300 gene mutations.

Acknowledgements

We would like to thanks the patient’s parents for their participation.

REFERENCES