Reliability of cerebral oximeter in non-invasive diagnosis and follow-up of hypercapnia

Seher Erdoğan, Arzu Oto, Mehmet Boşnak
Division of Pediatric Critical Care, Department of Pediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Turkey.
E-mail: seher70@gmail.com
Received: 22nd April 2016, Revised: 1st September 2016, Accepted: 10th October 2016

In this study, aimed to evaluate the sensitivity and specificity of cerebral oximetry and EtCO2 values in non-invasive diagnosis and monitoring of hypercapnia. This study enrolled pediatric patients admitted to and mechanically ventilated at the Pediatric Intensive Care Unit of Gaziantep University Faculty of Medicine Hospital between January 2014 and January 2015. Patients’ age, gender, diagnosis, ventilatory parameters, a measured of the mean end-tidal carbon dioxide value stream method, and the simultaneously monitored arterial blood gas PaCO2 level and near infrared spectroscopy device (NIRS) measurements were recorded. The mean age of patients was 61 months (min 4-max 193), and there were 8 (53.4%) female and 7 (46.6%) male subjects. A significant correlation was found between PCO2 and NIRS, PCO2 and EtCO2 (r = 0.571, p <0.001). There was a significant positive correlation between EtCO2 and NIRS (r = 0.479, p <0.001). NIRS levels were significantly higher (p <0.001) in the group with pCO2 >45; EtCO2 > 40 and pH <7.35, compared to the group with pCO2<45 EtCO2<40 and pH≥7.35. The best cut-off point for NIRS to distinguish the groups with PCO2 > 45 with PCO2<45 was 80.5, with a sensitivity of 65.3%, specificity of 84.3%, and positive and negative predictive values of 81.9% and 69.1%, respectively. The best cut-off point for NIRS to distinguish the groups with EtCO2 > 40 and EtCO2<40 was 81, with a sensitivity of 62.2%, specificity 77.9%, and positive and negative predictive values of 61.2% and 72.3%, respectively. As for pH <7.35 and PaCO2> 45, while sensitivity of EtCO2 (at a cut-off point of 40) was 64.9%; the sensitivity of NIRS (at a cut-off point of 80.5) was 28.1%, with EtCO2 being significantly more sensitive than NIRS (p <0.001). The results of the present study suggest that NIRS values of above 80 should alert clinicians for hypercapnia associated with increased cerebral blood flow.

Key words: end-tidal carbon dioxide, hypercapnia, near infrared spectroscopy.

Hypercarbia results in cerebral vasodilation and increases the cerebral blood flow, a phenomenon termed as the CO2 cerebrovascular reactivity1. Intracranial pressure increases in hypercarbia, which can cause a decrease in cerebral perfusion pressure in patients with significant neurological damage2. Although there are individual differences, every 1 mmHg increase in PaCO2 causes an increase in cerebral blood flow of 3% to 5%. Hypercarbia is also known to lower seizure threshold3,4. By virtue of its systemic vasodilatory action, hypercapnia may cause hypotension especially in hypovolemic patients, and it may worsen tissue injury in injured lungs by impairing wound healing and, augmenting inflammation5. Animal experiments have shown that hypercapnia stimulates the secretion of gastric hydrogen ions and increases the incidence of gastrointestinal bleeding6. Tateyama et al.7 showed in dogs that hypercapnia formed by adding 10% carbon dioxide to the breathing gas after normocapnic ventilation, increased cardiac lactate/pyruvate ratio coronary blood flow, and myocardial tissue oxygenation while it impaired myocardial aerobic metabolism.
Maintaining normocapnia and normoxemia is the main goal unless indicated otherwise in patients undergoing mechanical ventilation; with the early diagnosis of hypercapnia and taking the necessary measures being a great importance in critically ill patients.

Monitoring of end-tidal carbon dioxide (EtCO\textsubscript{2}) is an important component of monitorization of critically ill patients in anaesthesiology and pediatric intensive care units as well as in the emergency department. Normal EtCO\textsubscript{2} is 38 ± 4 mmHg. This level is closely correlated with PaCO\textsubscript{2} level and is lower than that by about 3.5 mmHg8.

The near infrared spectroscopy device (NIRS) that has been used in clinics in recent years can show instant responses in cerebral oxygenation. NIRS is an optical method monitoring primarily regional oxygenation of the brain. The method is based on the Beer-Lambert law for cerebral monitoring from the forehead. An oximeter probe measures concentrations of different wavelengths of light waves in the neck in the frontal cortex [650-850 nm, oxyhemoglobin (810 nm) and deoxyhemoglobin (730 nm)] through a cross-sectional tissue. INVOS used as one of the first examples of NIRS calculates regional saturation using two wavelengths in brain or the relevant tissue and measures both oxyhemoglobin and deoxyhemoglobin concentrations, giving a value defined as the regional oxygen saturation index (rSO\textsubscript{2} index = oksiHb/deoksiHb+oksiHb). rSO\textsubscript{2} can be calculated without being connected to the pulse and can rapidly change in response to cerebral ischemia. From this standpoint, studies with healthy young adults and children have shown that the average cerebral rSO\textsubscript{2} is 70%, with reductions down to below 40-50% or 20% from baseline being reported as an indicator of hypoxic-ischemic neuronal damage9-11.

In the present study, we aimed to evaluate the sensitivity and specificity of cerebral oximetry and EtCO\textsubscript{2} values in non-invasive diagnosis and monitoring of hypercapnia.

Material and Methods

After the ethics committee approval, this study enrolled children aged between 1 month and 17 years who were admitted to a 7-bed pediatric intensive care unit (PICU) of a tertiary university hospital and received mechanical ventilation between January 2014 and January 2015. The patients were not intentionally subjected to hypoventilation, and the NIRS levels of patients with elevated EtCO\textsubscript{2} levels and hypercarbia in arterial blood gas analysis were recorded. Those with a preliminary or definitive diagnosis of ICP (intracranial pressure increase syndrome), those with increasing ICP levels during monitoring, and those that had congenital heart disease or metabolic acidosis were excluded from the study. Patients’ age, sex, comorbidities, mechanical ventilation mode, and mortality scoring were recorded.

EtCO\textsubscript{2} values were measured continuously with the Nihon Kohden BSM-4114 intensive care monitor using an invasive infrared spectroscopy and mean-stream methods. rSO\textsubscript{2} values were measured with a somatic-cerebral oximeter (INVOS 5100C, Somanetics). The NIRS probe was applied to the forehead, just above the eyebrows. To assess acid-base and to determine respiratory balance, partial pressures of arterial blood oxygen (PaO\textsubscript{2}) and carbon dioxide (PaCO\textsubscript{2}) were measured with arterial blood gas analysis. Patients with metabolic acidosis were excluded from the study protocol.

Statistical analysis

Data analysis was done with SPSS for Windows 11.5 software package. The distribution of

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>The number of cases (n)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney diseases</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>Respiratory disorders</td>
<td>4</td>
<td>26.6</td>
</tr>
<tr>
<td>Nervous system diseases</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Hemato-oncological diseases</td>
<td>1</td>
<td>6.7</td>
</tr>
<tr>
<td>Scorpion stings</td>
<td>1</td>
<td>6.7</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>

Table I. Diagnosis of Patients
quantitative variables was investigated using Kolmogorov-Smirnov or Shapiro-Wilk test. Descriptive statistics included mean ± standard deviation for continuous variables and number and percentage (%) of for nominal variables.

The significance of the difference of the median values of pairs of groups was analysed with the Mann-Whitney U test. Spearman’s correlation test was used to test the significance of the relationship between continuous variables. Nominal variables were evaluated with Pearson’s Chi-square or McNemar test.

Whether NIRS value was a significant marker that differentiated groups with $\text{PaCO}_2 > 45$ and $\text{PaCO}_2 < 45$ and $\text{EtCO}_2 > 40$ with $\text{EtCO}_2 < 40$ was explored using 95% confidence intervals and area under ROC curve. When a significant area under the curve was obtained, the maximum possible sum of the sensitivity and specificity levels was considered the best cut-off point. Then, the sensitivity, specificity, positive and negative predictive values of the best NIRS cut-off points were calculated. A p-value of less than 0.05 was considered statistically significant.

Results

The mean age of the patients was 61 (4-193) months. There were 8 (53.4%) female subjects and 7 (46.6%) male subjects. All patients were provided with respiratory support by mechanical ventilation in SIMV-PS (pressure support-synchronised intermittent mandatory ventilation) mode. A mean PIP of 22 cm H_2O (min 12-max 39), a mean PEEP of 7 cm (min 1-max 15), a mean FiO$_2$ of 0.6 (min 0.3- max 1), and a mean frequency of 25/min (min 14- max 60) were applied. Nephrological disorders constituted 40% of the patients’ diseases, followed by respiratory system diseases and neurological diseases. Diagnoses of the patients were presented on Table I.

A significant correlation was found between PCO$_2$ and NIRS, and between PCO$_2$ and EtCO$_2$ ($r = 0.571, p < 0.001$). A significant positive correlation was also detected between EtCO$_2$ and NIRS ($r = 0.479, p < 0.001$).

NIRS levels were significantly higher in the
group with PCO$_2$ >45, EtCO$_2$ >40 and pH <7.35 compared to the group that had PCO$_2$ <45, EtCO$_2$ <40, and pH ≥7.35 (p <0.001) (Table II).

The mean NIRS value was 79 (min 46-max 99) when pCO$_2$ was >35 and 68 (min 55, max 86) when pCO$_2$ was <35 (p<0.001).

The area under the ROC curve for NIRS was able to reliably distinguish the groups with PaCO$_2$ > 45 and PaCO$_2$ <40 (area under the curve: 0.775, 95% confidence interval: 0.724-0.825, p <0.001) (Fig.1). To distinguish the groups with pCO$_2$ > 45 with PCO$_2$ <45, 80.5 was the best cut-off point for NIRS, having a sensitivity of 65.3%, specificity of 84.3%, and positive and negative predictive values of 81.9% and 69.1%, respectively.

The area under the ROC curve for NIRS could reliably distinguish the groups with EtCO$_2$ > 40 and EtCO$_2$ <40 (area under the curve: 0.737, 95% confidence interval: from 0.687 to 0.784, p <0.001) (Fig. 2). The best cut-off point for measurements to distinguish between the groups with EtCO$_2$ > 40 and EtCO$_2$ <40 was 81, having a sensitivity of 62.2%, specificity of 77.9%, and positive and negative predictive values of 61.2% and 72.3%, respectively.

While the proportion of patients with PaCO$_2$ > 45 was 53%, those with EtCO$_2$ > 40 was 28.6%, with the ratio of patients with pCO$_2$ >45 being significantly higher than the proportion of those with EtCO$_2$ >40 (P <0.001). There was a statistically significant, albeit a very low level concordance between the distribution of PaCO$_2$ and EtCO$_2$ levels (Kappa 0.378 and p <0.001). The distributions of PaCO$_2$ and EtCO$_2$ measurements were shown on Table III.

In patients with PaCO$_2$ > 45; the median EtCO$_2$ level was 40 (max 70, min-21), while the median EtCO$_2$ level was 35 in patients with PaCO$_2$<45 (min 15, max 50), with the median EtCO$_2$ level being significantly higher in those with PaCO$_2$>45 (p <0.001).

As for pH <7.35 and PaCO$_2$ > 45, while the sensitivity of EtCO$_2$ (at a cut-off point of 40) was 64.9%, NIRS had a sensitivity (at a cut-off point of 80.5) of 28.1%, with EtCO$_2$ being significantly more sensitive than NIRS (p <0.001). NIRS measurement results in relation to to PaCO$_2$ and pH levels were presented on Table IV.

Discussion

The difference between EtCO$_2$ and PaCO$_2$ is a result of alveolar dead space, and its normal value is between 3 and 5 mmHg. Decrease in lung perfusion (air embolism, position changes, decreased cardiac output, reduced blood pressure), increases alveolar dead space, diluting exhaled carbon dioxide, and reducing EtCO$_2$. EtCO$_2$ increases when carbon dioxide production is increased such as sepsis, malignant hyperthermia, and in cases where its elimination is limited by reduced alveolar ventilation. The return of spontaneous circulation during cardiopulmonary resuscitation quickly raises EtCO$_2$.

In a study of 32 mechanically ventilated newborns dated 2008, there was a good correlation between mainstream EtCO$_2$ and PaCO$_2$, Whereas this correlation was impaired in

Table III. The Distribution of PaCO$_2$ and EtCO$_2$ Measurements

<table>
<thead>
<tr>
<th>PaCO$_2$ <45</th>
<th>PaCO$_2$ > 45</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtCO$_2$ <40</td>
<td>132 (39.8%)</td>
<td>81 (35.2%)</td>
</tr>
<tr>
<td>EtCO$_2$ >40</td>
<td>24 (7.2%)</td>
<td>95 (28.6%)</td>
</tr>
<tr>
<td>Total</td>
<td>156 (47.0%)</td>
<td>176 (53.0%)</td>
</tr>
</tbody>
</table>

Comparisons made between the pCO2 level when † pH levels are kept constant
Comparisons made between the pH levels when ‡ PaCO$_2$ levels are kept constant (Mann-Whitney U test)

Table IV. NIRS Measurements According to PaCO$_2$ and pH Level

<table>
<thead>
<tr>
<th>pH<7.35</th>
<th>PaCO$_2$ <45</th>
<th>PaCO$_2$ > 45</th>
<th>p-value †</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76 (62-88)</td>
<td>85 (47-96)</td>
<td>0.007</td>
</tr>
<tr>
<td>ph≥7.35</td>
<td>71 (46-95)</td>
<td>81 (61-99)</td>
<td><0.001</td>
</tr>
<tr>
<td>p-value‡</td>
<td>0.117</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>
those with pulmonary disease, it was restorated by the application of surfactant. Several other studies conducted at neonatal intensive care units also supported this result.

In a study conducted by McDonald et al. in mechanically ventilated pediatric patients, the difference between EtCO$_2$ and PaCO$_2$ was ≤ 5 mm Hg in 54% of patients and ≤ 10 mmHg in 80%. Furthermore, the gap widened as the duration of mechanical ventilation was increased.

Raz et al. reported that EtCO$_2$ accurately reflected PaCO$_2$ and there was a statistically significant correlation between mean EtCO$_2$ and PaCO$_2$ (in SIMV mode r: 0.893, p <0.0001; in CPAP mode r: 0.841, p <0.0001; in T-Tubes r: 0.923, p <0.0001).

In a study comprising children on mechanical ventilation conducted by Mehta et al., EtCO$_2$ showed an excellent correlation with PaCO$_2$ (n = 150, r: 0.914), although it was no longer the case when P / F <200. Similarly, Bath et al. reported that this correlation was impaired in case of lung pathologies such as hyaline membrane disease or meconium aspiration.

De Waal et al. investigated the effects of low-pressure carbon dioxide pneumoperitoneum on regional cerebral oxygen saturation and cerebral blood flow. During insufflation, an increase was reported in EtCO$_2$ and PaCO$_2$ levels; they additionally noted that their NIRS value increased by 15.7 ± 8.8%. This increase did not result from a reduction of cerebral oxygen metabolism during carbon dioxide insufflation, but an increase in cerebral blood flow due to rising carbon dioxide levels.

Hypercapnia results in cerebral vasodilation and increases the cerebral blood flow, a phenomenon which is defined CO$_2$ cerebrovascular reactivity. Evidence from positron emission tomography studies indicates that the cerebral blood volume changes seen during hypercapnia and hypocapnia are primarily caused by arterial volume changes. Hypercapnia studies with NIRS measurement have been carried out in healthy volunteers to characterize brain tissue oxygenation and blood flow changes.

In 2012 Quarti et al. reported a study in 90 pediatric patients with congenital heart disease requiring external carbon dioxide support during cardiopulmonary bypass application to correct carbon dioxide hypocarbia. The authors assessed NIRS and PaCO$_2$ in 3 phases, namely before, during, and after the infusion. After the addition of carbon dioxide, NIRS rose to 63.4 from 52.9; and it decreased to 55.8 by stopping the application. Meanwhile, PaCO$_2$ increased to 40.6 mmHg from 31.3 mmHg and decreased to 34.4 mmHg by stopping application. We also found significant correlations between NIRS and PaCO$_2$, PaCO$_2$ and EtCO$_2$ (r = 0.571, p <0.001). A significant and positive correlation existed between NIRS and EtCO$_2$ (r = 0.479, p <0.001).

Hypocapnia induces cerebral vasoconstriction and decreases CBF. We also found lower NIRS level in hypocarbia compared to hypercarbia (p<0.001).

The limitations of our study included the disproportional number of samples relative to the number of patients, and the lack of the consideration given to the effects of changes in the oxygenation index while assessing the correlation between PaCO$_2$, EtCO$_2$ and NIRS. Another limitation was a wide age distribution (4-193 months) of our patients. As is known, physiological dead space may show a mild increases with aging, which may have partly affected our results.

The results of the present study suggest that NIRS values of above 80 should alert clinicians for hypercapnia associated with increased cerebral blood flow.

REFERENCES

