Pyloric atresia-junctional epidermolysis bullosa syndrome showing novel c.4505-4508insACTC mutations in integrin b4 gene (ITGB4)

Mehmet Mutlu, Ersan Kalay, Beril Dilber, Yakup Aslan, Embiya Dilber, Nour Almaani, John A McGrath

Division of Neonatology, and Pediatric Cardiology Department of Pediatrics, and Department of Medical Biology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey, Division of Genetics and Molecular Medicine, Department of Dermatology, King’s College London (Guy’s Campus), St John’s Institute of Dermatology, London, United Kingdom. Email: drmehmetmutlu38@hotmail.com

Received : 23 September 2014, Revised : 22 October 2014, Accepted : 11 December 2014

Epidermolysis bullosa (EB) is an inherited, bullous disease, characterized by blisters followed with skin and mucosal erosions. Its severity ranges from mild to lethal. Depending on the level of tissue separation in the dermal–epidermal basement membrane zone EB is classified four major categories such as EB simplex (EBS), junctional EB (JEB), dystrophic EB (DEB), and Kindler syndrome. Junctional epidermolysis bullosa with pyloric atresia (JEB-PA) is a rare autosomal recessive form and characterized by severe mucocutaneous blisters and gastric outlet obstruction. Most of the mutations in JEB-PA are associated with the α6β4 integrin genes (ITGA6, ITGB4). Herein, we present a female newborn with lethal JEB-PA caused by a novel beta4 integrin mutation.

Key words: epidermolysis bullosa, pyloric atresia, mutation, newborn.

Epidermolysis bullosa (EB) is an inherited, bullous disease, characterized by blisters followed with skin and mucosal erosions. Its severity ranges from mild to lethal. Depending on the level of tissue separation in the dermal–epidermal basement membrane zone EB is classified four major categories such as EB simplex (EBS), junctional EB (JEB), dystrophic EB (DEB), and Kindler syndrome. Junctional epidermolysis bullosa with pyloric atresia (JEB-PA) is a rare autosomal recessive form and characterized by severe mucocutaneous blisters and gastric outlet obstruction. Herein, a novel homozygous ITGB4 mutation (c.4505-4508insACTC) leading to premature translation termination (p.Thr1504LeufsX69) was described in a newborn with JEB-PA.

Case Report

A one-day-old female infant was referred to our neonatal intensive care unit with symptoms of non-bilious vomiting, non-sucking and bullous skin lesions. The infant was born from a gravida 3, para 1 (G3P1) mother by caesarian section at 37 weeks’ gestation with a birth weight of 2850 g. Antenatal ultrasonography examination revealed polyhydramnios. Her parents were cousins. The family history of the mother revealed one previous in-utero exitus and one normal delivery. Both of those children had pyloric atresia and skin lesions. The baby born from the second pregnancy died due to sepsis in the first month of life.

Examination of our case revealed blistering skin lesions (Fig. 1A). Mucosal lesions were seen in the mouth. The upper abdomen was mildly distended. Abdominal X-ray showed a single prominent gastric air bubble and lack of air distally (Fig. 1B). Renal ultrasonography and hematological and biochemical analysis were normal. Heineke-Mikulicz pyloroplasty was performed for pyloric atresia on the fifth day of life. The patient’s general condition deteriorated progressively during 58 days of...
life, and she died due to septic shock.

Mutation Analysis

Genomic DNAs of family members were extracted from peripheral blood lymphocytes as described by Miller et al. Mutation screening on ITGB4 (GenBank accession number: NM_000213.3) were carried out by Sanger sequencing. Co-segregation of c.4505-4508 insACTC mutation with disease was tested by amplification refractory mutation system (ARMS). Primers sequence and amplification conditions are available on request.

As a result of mutation analyses, a homozygous four base-pair insertion (c.4505-4508insACTC) was found in ITGB4, which leads a frame shift and premature translation termination (p.Thr1504LeufsX69) that causes loss of last two Fibronectin type 3 domains of the protein in the patient. ARMS revealed that parents were heterozygous carrier for the mutation and her uncle was homozygous normal genotype (III:1) (Fig. 2).

Discussion

Junctional epidermolysis bullosa with pyloric atresia is an autosomal recessive blistering disease including lethal and non-lethal variants. Most of the mutations in JEB-PA are associated with the α6β4 integrin genes (ITGA6, ITGB4). In JEB, the tissue separation takes place within the lamina lucida. In this study, we have determined a novel homozygous 4-bp insertion mutation (c.4505-4508insACTC) in ITGB4 in a newborn with lethal EB with pyloric atresia.

ITGB4 encodes a transmembrane protein β4 integrin. The extracellular amino site of β4 integrin contains four cysteine rich motifs and the intracellular carboxyl site of the protein consists of two pairs of fibronectin type III (FNTIII) repeats spaced by a connecting segment and a calx-β motif. Integrin β4 associated with only integrin α6 to form a laminin receptor α6β4 integrin which is predominantly expressed in stratified squamous and transitional epithelial cells, such as keratinocytes, endothelial cells and epithelial cells lining of the gastrointestinal, respiratory and genitourinary tracts. The β4 integrin participate in the assembly and stabilization of the specialized structure called hemidesmosomes. Hemidesmosomes are adhesion structures that mediate the link between the intermediate filament cytoskeleton of epithelial cells and the underlying basement membrane. The intracellular site of the β4 subunit of α6β4 integrin is playing crucial role for interaction with other component of the hemidesmosomes such as plectin, bullous pemphigoid antigen 180 (BP-180) and bullous pemphigoid antigen 230 (BP-230). Interaction of β4 integrin with BP180 and BP-230 is carried out by last pair of FNIII domains. In addition to protein-protein interaction, last pair of FNIII domains also contributes the signal transduction upon MAP kinase ERK and Jnk signaling pathways (FER EKLE).

Fig. 1. A. Clinic appearance of the epidermolysis bullosa. B. Radiologic appearance of the pyloric atresia.

Fig. 2. Family pedigree and mutation analysis of ITGB4. a. Family pedigree of the patient. Arrow indicates the index patient. b. Sequence chromatogram showing the homozygous c.4505-4508 insACTC mutation (upper panel) and wild-type sequence (lower panel). c. Segregation of c.4505-4508 insACTC with disease in family is shown by ARMS. The wild-type allele is shown in the upper panel and the mutant allele in the lower panel.
four-base insertion mutation of ITGB4 which we presented here causes the frame shift and premature translation termination codon (p.Thr1504LeufsX69) resulted with deletion of last two FNIII domains of β4 integrin which are crucial for hemidesmosome assembly and signaling transduction. Consisting with our finding deletion of the last two FNIII domain of the β4 integrin was associated with JEB-PA in several patients. In summary, the present study’s findings show that lethal JEB-PA was caused by a novel β4 integrin mutation.

REFERENCES
8. de Pereda JM, Lillo MP, Sonnenberg A. Structural basis of the interaction between integrin alpha6beta4 and plectin at the hemidesmosomes. EMBO J 2009; 28: 1180-1190.