Geotrichum capitatum septicemia in a hematological malignancy patient with positive galactomannan antigen: case report and review of the literature

Aslınęur Özkaya-Parlakay1, Ali Bülent Cengiz1, Eda Karadağ-Öncel1, Barış Kuşkonmaz2, Zeynep Sarıbaş3, Ateş Kara1, Berna Oğuz4

Divisions of 1Pediatric Infectious Diseases and 2Pediatric Hematology, Department of Pediatrics and 3Department of Medical Microbiology, 4Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
E-mail: aslinur@hacettepe.edu.tr

Geotrichum capitatum, formerly known as Trichosporon capitatum, is an uncommon but frequently fatal invasive fungal infection in immunocompromised patients, especially in hematological malignancies. We report a seven-year-old patient with acute myeloid leukemia with Geotrichum septicemia with involvement of the lungs, liver, spleen, and kidneys, who had a favorable outcome after therapy. Alteration of antifungal treatment to liposomal amphotericin B resolved the fever with favorable clinical response.

Key words: Geotrichum capitatum, septicemia, child.

Invasive fungal infections are unfortunately encountered commonly in immunocompromised patients, especially those with hematological malignancies and severe neutropenia. Over the past two decades, invasive fungal infections have increased significantly in both number and frequency and as causes of morbidity and mortality. The possible reasons for the increase in the incidence of the mycoses are increased use of intensive cytotoxic therapy, immunosuppressive treatment, allogenic blood stem cell transplantation, and more invasive medical management with broader spectrum antibiotics. The rate of sepsis due to fungal organisms in the United States (USA) increased by 207% during the period 1979–2000, which was the largest increase observed due to any group of organisms. Most of these fungal infections are caused by Candida spp., Aspergillus spp. and Mucor spp. Geotrichum capitatum, originally known as Trichosporon capitatum, has occasionally been reported especially in acute leukemia patients. Increase in the use of prophylaxis and early empiric antifungal therapy result in clinical infection with this mycosis.

G. capitatum is considered in the phylum Ascomycota. It produces arthroconidia and anelloconidia. Trichosporon also produces arthroconidia, and biochemical tests and carbohydrate assimilation patterns are generally used to differentiate G. capitatum from Trichosporon. This organism can be encountered in foods and soil as well as human mucosa and skin. As virulence of this fungus is low, it is not expected to cause infection in immunocompetent patients. When it is the causative organism in non-neutropenic patients, local infections have been reported in the literature.

Possible routes for entrance of G. capitatum could be the respiratory and digestive tract. Clinical findings of G. capitatum infection cannot be differentiated from invasive candidiasis and aspergillosis.

We conducted a MEDLINE search for Geotrichum, Blastoschizomyces and Trichosporon capitatum between 1965 and September 2011, and found 202 reports, of which 186 were invasive. Outcomes of the disease is usually unfavorable, with a mortality rate over 50%. To the best of our knowledge, our case is the second youngest (both of them...
are 7 years old7) patient in whom \textit{G. capitatum} was isolated. Galactomannan antigen positivity was an interesting finding in our case, similar to the reports of Giacchino et al.7 and Bonini et al.8. Enzyme-linked immunosorbent assay (ELISA) is widely used throughout the world in diagnosing invasive aspergillosis, but a major problem with the detection of circulating galactomannan antigen is the occurrence of false-positive results, which in some cases, have been shown to be related to cross-reactivity with other opportunistic fungi, as also seen in our case. In this report, it was aimed to emphasize the importance of investigating not only aspergillus but also other rarely encountered fungi such as \textit{G. capitatum} in galactomannan antigen positivity and resistant fever in hematological malignancies.

Case Report

A seven-year-old boy who was under treatment for acute myelogenous leukemia and had received cytarabine 20 days prior to his complaints admitted to a local hospital with a complaint of rectal pain and fever. He was hospitalized because of neutropenia, with 200/mm3 absolute neutrophil count.

His physical examination yielded a perirectal hyperemic abscess measuring 3x2 cm. The clinical exam was otherwise normal. He also had thrombocytopenia (7000/mm3); other laboratory examinations in that hospital were normal.

Meropenem, vancomycin, fluconazole, metronidazole, and amikacin were initiated in that hospital with a diagnosis of neutropenic fever and perirectal abscess. He was referred to our hospital as he was febrile despite 14-day antimicrobial treatment.

On the day of admittance to our hospital, he had weakness and rectal pain. The physical examination revealed hyperemic perirectal abscess in the 4 o’clock position, measuring 2x2 cm and covered with crust.

Leukocyte count was 500/mm3 with no polymorphonuclear leukocytes or blast cells, hemoglobin was 11 g/dl and platelet count was 49000/mm3. Radiologic examination of the thorax did not show any pathologic findings. Imipenem, vancomycin, ornidazole, and caspofungin were initiated as empiric antimicrobial therapy. Blood, urine and throat cultures did not reveal any microorganisms.

As his fever did not resolve, bone marrow aspiration was studied, which was hypocellular with an increase in histiocytes. On the fifth day after admittance to our hospital, his thorax tomography showed consolidation in the right middle lobe and left lingular segment. Since the patient’s fever persisted on day 7 after initiation of antimicrobial therapy in our hospital, abdominal ultrasonography, chest X-ray and culture studies were repeated. Ultrasonography showed hypoechoic nodules in the spleen. As there was suspicion of fungal infection, voriconazole was added to the therapy.

![Fig. 1. (a). Thorax CT image showed two nodules in the lower lobe of the right lung (arrows) and subsegmental atelectasia in the right middle lobe.](image)

![Fig. 1. (b). At the same time, abdominal CT image showed hypodense multiple nodules in the spleen (arrowheads), in the left kidney (long arrows) and in the liver (short arrows). These findings were compatible with fungal infection.](image)
On day 10, galactomannan antigen increased to 10 TU/ml, while it was 2.7 TU/ml on day 4 (0-1 TU/ml: negative, 1-1.5 TU/ml: board). Blood cultures were reported as positive by BACTEC automated blood culture system on the ninth day after initiation of antimicrobial therapy. On day 18, as the fever was still present, thoracoabdominal tomography was repeated, and two new nodules with a diameter of 1 cm were present in the lower zones of the lungs and multiple millimetric nodules were present in the kidneys, liver and spleen (Fig. 1). Identification of the yeast isolate was performed by assimilation tests (ID32C; BioMérieux, Marcy l’Etoile, France) and morphological examination on corn meal Tween 80 agar (Fig. 2 shows microorganism on Sabouraud dextrose agar). Susceptibility testing for fluconazole, voriconazole and caspofungin was performed according to the Clinical and Laboratory Standards Institute (CLSI) M27-A3 guide. broth microdilution susceptibility testing was performed, and minimum inhibitory concentrations (MICs) were read after 24 and 48 hours (h) incubation. MIC-2 values were 2 μg/ml (24 h) and 4 μg/ml (48 h) for fluconazole; 0.06 μg/ml (24 h) and 0.125 μg/ml (48 h) for voriconazole; and 2 μg/ml (24 h) and 4 μg/ml (48 h) for caspofungin. Susceptibility testing for amphotericin B was performed by Etest (AB Biodisk, Sweden) according to the manufacturer’s recommendations. Antibiotic medium 3 with 2% glucose was used, and MICs were the lowest concentration on the Etest strip at which there was 100% inhibition. Amphotericin B MIC values were 0.064 μg/ml in 24 h and 0.094 μg/ml in 48 h. Candida krusei ATCC 6258 was used as the quality control strain in each test. Antimicrobial susceptibility test interpretive categories are not defined for G. capitatum. According to the antifungal susceptibility testing results, caspofungin and voriconazole treatment was changed to liposomal amphotericin B (5 mg/kg/day) and voriconazole. The patient’s fever and general status responded well to the treatment alteration. His blood culture on day 31 did not yield any microorganisms, and on day 51, follow-up tomography was conducted, and revealed two nodules with a diameter of 4 mm, which was smaller compared to the older tomography. Voriconazole therapy was stopped in six weeks while amphotericin B was continued for eight weeks, and the patient was discharged with a plan of bone marrow transplantation, having 2700/mm³ absolute neutrophil count. Thoracic tomography on day 98 taken after treatment showed disappearance of the nodules (Fig. 3), and abdominal ultrasonography showed multiple hypoechoic nodules with a diameter of 6 mm, but no nodules were present in the spleen or kidneys. No kidney involvement was present based on ultrasonography, urine analysis and culture.

Discussion

G. capitatum septicemia is rare in hematological malignancies. Prolonged neutropenia, use of corticosteroids, vascular catheterization, chemotherapy, and broad-spectrum antibiotics...
are the same risk factors as for other invasive fungal infections13.

All fungal infections could have fungal colonization of the respiratory, urogenital or gastrointestinal tract preceding systemic infection as a common finding6,14. \textit{G. capitatum} can be found in the normal microbial flora of the human digestive and respiratory tracts, such that discrimination between colonization and infection is difficult. However, in many studies, it has been proven that the isolation of these yeasts from superficial sites is significantly correlated with the development of invasive infection2. The probable portal of entry is the gastrointestinal6,15 and respiratory6,9 systems or skin6,14, and nosocomial transmission has been suggested in a number of cases11. All of these pathways could be the possible routes in our patient.

Patients with \textit{G. capitatum} septicemia can present similarly to those with other fungal infections2-6. Typically, which was very demonstrative in our patient, fever with abrupt onset that is unresponsive to antibiotics is observed in patients with severe neutropenia, and almost all organs can be involved2,5,13.

In non-neutropenic patients, \textit{G. capitatum} infections can be local, such as endocarditis14,16, meningitis4, and osteomyelitis and intervertebral discitis17. Neutropenic patients are more likely to have disseminated infection2,5,6.

Blood culture is positive in more than 70% of invasive geotrichosis infections, with a high yield ratio, whereas for Candida, it is $<50\%$18, for Aspergillus 10\%19 and for Fusarium 56\%20, and 60–80\% of patients with \textit{G. capitatum} develop deep organ involvement2,5. In our patient, there was involvement of the lungs, spleen, liver, and kidneys.

Pulmonary involvement in cases from the literature is common in \textit{G. capitatum} septicemia2,6,9. Similar to invasive pulmonary aspergillosis, the halo sign and the air crescent sign are also present in \textit{G. capitatum} infection21. However, these findings were not present in our patient.

Skin involvement of acute disseminated \textit{G. capitatum} infection may be seen, likewise in fusarial infections, and lesions that are initially present as purpuric nodules might progress to centrally necrotic lesions, which can involve the oral and pharyngeal mucosae. The fungus can be found in biopsy and/or culture4,6, but in many cases, the skin biopsy is sterile6. Fusariosis causes skin involvement in 70\% of patients, yielding red or grey macules, which may develop central ulceration and black eschar22. It is possible that the etiologic agent of perirectal abscess was \textit{G. capitatum}, but as no biopsy was obtained from that region, it was not proven.

To date, no optimal curative therapy for systemic \textit{G. capitatum} infections has been established.

As the fever in our case did not resolve with caspofungin and voriconazole, treatment with liposomal amphotericin B instead of caspofungin was initiated, as in the cases found in the literature2,3,5,12,15, in whom conventional amphotericin B, either alone or together with other antifungal agents, was the most frequently used drug as first-line therapy. Giacchino et al.7 obtained a good result with voriconazole and amphotericin B in a seven-year-old patient, similar to our case.

In several studies, investigators have proposed amphotericin B together with flucytosine for geotrichosis2,6, but there is no evidence that this drug combination is more effective than single drug regimens. There are a few cases reported in which voriconazole or caspofungin was used as first-line therapy of geotrichosis5. However, outcomes of these cases were worse compared to amphotericin B alone or in combination with voriconazole.

Girmenia et al.23 investigated the in-vitro activities of amphotericin B, flucytosine, fluconazole, itraconazole, and voriconazole against 23 isolates of \textit{G. capitatum}. The results confirmed previous observations on the high activity of amphotericin B against this species6,9,15 and the poor susceptibility of some strains to flucytosine, fluconazole and itraconazole15,24, and showed voriconazole to be a very active drug against this fungus20. Our patient had a favorable outcome with six weeks voriconazole and eight weeks amphotericin B therapy, whereas there are successful results with shorter therapies (6 weeks amphotericin B duration)3.

Mortality of disseminated \textit{G. capitatum} infection is unfortunately high; prognosis is further
aggravated by neutropenia and other immune deficiencies, and also underlying disease2-4,6.

G. capitatum infection is a very rare but potentially fatal infection. If early diagnosis, effective antifungal treatment and marrow regeneration are achieved, the outcome might be more favorable. Galactomannan antigen positivity, a useful tool to diagnose aspergillosis, should also be detected for other rare causes of fungal infections. In patients with resistant fever and underlying hematological malignancy, fungal infection and *G. capitatum* should be kept in mind, and early initiation of appropriate antifungal treatment must be overviewed.

REFERENCES

